A linear programming based heuristic framework for min-max regret combinatorial optimization problems with interval costs

نویسندگان

  • Lucas Assunção
  • Thiago F. Noronha
  • Andréa C. Santos
  • Rafael Andrade
چکیده

This work deals with a class of problems under interval data uncertainty, namely interval robusthard problems, composed of interval data min-max regret generalizations of classical NP-hard combinatorial problems modeled as 0-1 integer linear programming problems. These problems are more challenging than other interval data min-max regret problems, as solely computing the cost of any feasible solution requires solving an instance of an NP-hard problem. The state-ofthe-art exact algorithms in the literature are based on the generation of a possibly exponential number of cuts. As each cut separation involves the resolution of an NP-hard classical optimization problem, the size of the instances that can be solved efficiently is relatively small. To smooth this issue, we present a modeling technique for interval robust-hard problems in the context of a heuristic framework. The heuristic obtains feasible solutions by exploring dual information of a linearly relaxed model associated with the classical optimization problem counterpart. Computational experiments for interval data min-max regret versions of the restricted shortest path problem and the set covering problem show that our heuristic is able to find optimal or near-optimal solutions and also improves the primal bounds obtained by a state-of-the-art exact algorithm and a 2-approximation procedure for interval data min-max regret problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Min-Max Regret Scheduling To Minimize the Total Weight of Late Jobs With Interval Uncertainty

We study the single machine scheduling problem with the objective to minimize the total weight of late jobs. It is assumed that the processing times of jobs are not exactly known at the time when a complete schedule must be dispatched. Instead, only interval bounds for these parameters are given. In contrast to the stochastic optimization approach, we consider the problem of finding a robust sc...

متن کامل

Approximation of min-max and min-max regret versions of some combinatorial optimization problems

This paper investigates, for the first time in the literature, the approximation of minmax (regret) versions of classical problems like shortest path, minimum spanning tree, and knapsack. For a constant number of scenarios, we establish fully polynomial-time approximation schemes for the min-max versions of these problems, using relationships between multi-objective and min-max optimization. Us...

متن کامل

Min-max and min-max regret versions of combinatorial optimization problems: A survey

Min-max and min-max regret criteria are commonly used to define robust solutions. After motivating the use of these criteria, we present general results. Then, we survey complexity results for the min-max and min-max regret versions of some combinatorial optimization problems: shortest path, spanning tree, assignment, min cut, min s-t cut, knapsack. Since most of these problems are NP -hard, we...

متن کامل

Min-max and min-max regret versions of some combinatorial optimization problems: a survey

Min-max and min-max regret criteria are commonly used to define robust solutions. After motivating the use of these criteria, we present general results. Then, we survey complexity results for the min-max and min-max regret versions of some combinatorial optimization problems: shortest path, spanning tree, assignment, cut, s-t cut, knapsack. Since most of these problems are NP-hard, we also inv...

متن کامل

Computing Min-Max Regret Solutions in Possibilistic Combinatorial Optimization Problems

In this chapter we discuss a wide class of combinatorial optimization problems with a linear sum and a bottleneck cost function. We first investigate the case when the weights in the problem are modeled as closed intervals. We show how the notion of optimality can be extended by using a concept of a deviation interval. In order to choose a solution we adopt a robust approach. We seek a solution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & OR

دوره 81  شماره 

صفحات  -

تاریخ انتشار 2017